首页 研究报告有何价值 如何订购 我们的优势 收藏本站
首页 > 行业研究报告 > 信息产业 > 软件 > 2020-2025年中国大数据市场竞争格局分析与投资风险预测报告

2020-2025年中国大数据市场竞争格局分析与投资风险预测报告

    2020-2025年中国大数据市场竞争格局分析与投资风险预测报告
  • 报告编号:5662
  • 报告页数:200页
  • 图表数量:60个
  • 修订时间:2020年03月
  • 交付方式:Email / 快递(免运费 1-2天送达)
  • 电话订购:400-886-7071
  • 目录打印:打印
  • 热点行业:大数据
  • 选择版本:
    电子版 ¥8500
    纸质版 ¥8500
    两版合订 ¥9000
    您选择的报告版本价格为:¥ 8500.00
    您选择的报告版本价格为:¥ 8500.00
    您选择的报告版本价格为:¥ 9000.00

报告简介

物联网云计算之后,大数据已经成为当前信息技术产业最受关注的概念之一。大数据是为了更经济地从高频率获取的、大容量的、不同结构和类型的数据中获取价值,而设计的新一代架构和技术。人们普遍将该定义概括为四个“V”,即更大的容量(Volume,从TB级跃升至PB级,甚至EB级)、更高的多样性(Variety,包括结构化、半结构化和非结构化数据),以及更快的生成速度(VelocITy)。前面三个“V”的组合推动了第四个因素——价值(Value)。

全球的数据储量仅在2011就达到1.8ZB,相当于每个美国人每分钟写3条Twitter信息,总共写2.6976万年。2019年全球数据量达到约41ZB。而今后十年,用于存储数据的全球服务器总量还将增长十倍。大数据正在成为国家竞争的前沿,以及产业竞争力和商业模式创新的源泉。联合国“数据脉动”计划、美国“大数据”战略、英国“数据权”运动、日本“面向2020年的ICT综合战略”、韩国大数据中心战略等先后开启了大数据战略的大幕,有力推动了大数据产业化、市场化进程。

2017年,中国大数据产业市场规模达到4,700亿元,同比增长30.6%;2018年,大数据产业市场规模约为5,300亿元,同比增长15%。我们预计,2020年我国大数据产业市场规模将达到7,400亿元,未来五年(2020-2024)年均复合增长率约为14.61%,2024年将达到12,700亿元。

十九大报告中提出“推动大数据与实体经济深度融合”,“十四五”规划中提出“实施国家大数据战略”。卫健、农业环保、检察、税务等部门还出台了领域大数据发展的具体政策。截至2019年初,所有省级行政区都发布了大数据相关的发展规划,十几个省市设立了大数据管理局,8个国家大数据综合试验区、11个国家工程实验室启动建设。可以说,大数据的政策体系已经基本搭建完成,目前已经纷纷进入落地实施甚至评估检查阶段。

数据安全保障领域,2019年6月国家互联网信息办公室发布《数据安全管理办法(征求意见稿)》对网络运营者在数据收集、处理使用、安全监督管理等方面提出了要求,为个人数据安全加上了一把锁。截至2019年6月,中国网民规模为8.54亿人,互联网普及率达61.2%,网站数量518万个。分析预测“十四五”期间,大数据产业将迎来巨大发展机遇。

报告用途及价值

本行业报告在大量周密的市场调研基础上,主要依据了国家统计局、国家工信部、国家发改委、国务院发展研究中心、中国信息协会、中国互联网协会、51行业报告网、全国及海外多种相关报刊杂志以及专业研究机构公布和提供的大量资料,对我国大数据及各子行业的发展状况、上下游行业发展状况、市场供需形势、新业务与技术等进行了分析,并重点分析了我国大数据行业发展状况和特点,以及中国大数据行业将面临的挑战、企业的发展策略等。报告还对全球的大数据行业发展态势作了详细分析,并对大数据行业进行了趋向研判,是大数据建设、经营企业、科研、投资机构等单位准确了解目前大数据业发展动态,把握企业定位和发展方向不可多得的精品。

报告目录

第一章 大数据产业相关概述

1.1 大数据介绍

1.1.1 大数据的产生

1.1.2 大数据的定义

1.1.3 大数据的特点

1.1.4 大数据的类型

1.1.5 大数据典型分类

1.1.6 大数据的各个环节

1.2 大数据的价值及影响

1.2.1 大数据价值分析

1.2.2 大数据研究意义

1.2.3 大数据应用价值

1.2.4 对信息时代影响

1.3 大数据产业链构成分析

1.3.1 大数据产业链结构

1.3.2 大数据产业链领域

1.3.3 产业链价值流动方向

1.4 大数据技术层结构分析

1.4.1 大数据关键技术构成

1.4.2 大数据采集与预处理技术

1.4.3 大数据存储管理技术

1.4.4 大数据处理的核心技术

1.4.5 大数据分析挖掘技术

1.4.6 大数据可视化技术

1.4.7 大数据安全技术

第二章 国际大数据产业发展分析

2.1 全球大数据产业总体发展分析

2.1.1 产业发展变革

2.1.2 产业发展阶段

2.1.3 产业规模状况

2.1.4 细分市场格局

2.1.5 企业类型分布

2.1.6 重点企业分析

2.1.7 产业人才发展

2.2 欧盟大数据产业发展布局

2.2.1 欧盟通用数据保护条例

2.2.2 欧盟数据经济规模分析

2.2.3 欧盟推进大数据产业发展

2.2.4 欧盟大数据产业战略特点

2.2.5 产业战略建设的相关启示

2.2.6 欧盟布局大数据产业应用

2.2.7 欧盟大数据产业发展规划

2.3 美国大数据产业发展分析

2.3.1 大数据发展扶持政策

2.3.2 大数据产业发展战略

2.3.3 大数据应用案例分析

2.3.4 大数据企业分布情况

2.3.5 大数据协同创新措施

2.3.6 大数据技术发展措施

2.4 日本大数据产业发展分析

2.4.1 大数据发展历程

2.4.2 大数据相关法规

2.4.3 大数据发展趋势

2.4.4 大数据预防灾害

2.4.5 “限定提供数据”条款

2.4.6 对我国大数据法律启示

2.5 其他国家大数据产业发展动态

2.5.1 法国

2.5.2 韩国

2.5.3 新加坡

第三章 中国大数据产业发展分析

3.1 中国大数据产业发展综述

3.1.1 大数据产业概念分析

3.1.2 大数据产业构建层次

3.1.3 大数据发展的必然性

3.1.4 大数据产业驱动主体

3.1.5 大数据产业发展阶段

3.1.6 地区大数据产业联盟

3.1.7 数字经济的发展水平

3.1.8 大数据总体市场规模

3.1.9 大数据核心产业规模

3.2 中国大数据产业发展进程分析

3.2.1 政策方面

3.2.2 技术方面

3.2.3 应用方面

3.2.4 试点方面

3.2.5 人才方面

3.3 大数据产业竞争格局

3.3.1 大数据相关企业规模概述

3.3.2 大数据产业竞争主体分类

3.3.3 产业链环节竞争格局分析

3.3.4 大数据竞争企业资本层次

3.3.5 大数据百强企业统计分析

3.3.6 大数据创新场景应用服务商

3.3.7 互联网企业布局大数据产业

3.3.8 大数据热点应用领域的竞争

3.3.9 大数据产业竞争趋势展望

3.4 中国大数据市场供需分析

3.4.1 大数据市场供给结构

3.4.2 主要行业大数据需求状况

3.4.3 企业大数据的应用及需求

3.4.4 大数据细分领域需求场景

3.4.5 大数据热点领域需求分析

3.4.6 数据小型机市场需求分析

3.5 中国大数据产业存在的问题

3.5.1 面临挑战分析

3.5.2 核心技术薄弱

3.5.3 数据相关问题

3.5.4 数据安全问题

3.5.5 人才供需问题

3.6 中国大数据产业的发展策略

3.6.1 相关政策建议

3.6.2 推进研发应用

3.6.3 避免过度建设

3.6.4 提高数据安全

3.6.5 地区发展思路

3.6.6 推动标准建设

3.6.7 打破信息孤岛

第四章 大数据产业上游——数据源存储层

4.1 数据基础设施发展综况

4.1.1 数据基础设施的范围

4.1.2 数据基础设施的特征

4.1.3 数据基础的相关企业

4.1.4 数据基础设施的展望

4.2 数据来源层分析

4.2.1 大数据的来源渠道

4.2.2 新技术带来数据增长

4.2.3 数据资源的网络基础

4.2.4 数据资源SWOT分析

4.2.5 数据资源获取难度

4.2.6 数据资源开放情况

4.3 数据存储层分析

4.3.1 大数据存储方式

4.3.2 大数据储量规模分析

4.3.3 大数据存储架构分析

4.3.4 数据仓库建设的重要性

4.3.5 新型MPP数据库的价值

4.4 数据存储中心建设状况

4.4.1 全球数据中心建设规模

4.4.2 国内数据中心市场规模

4.4.3 数据中心区域发展格局

4.4.4 数据中心的建设特点分析

4.4.5 数据中心的市场竞争格局

4.4.6 大数据中心未来发展趋势

4.4.7 数据中心的布局策略分析

4.4.8 数据中心机房节能降耗趋势

4.5 数据资源型企业——电信运营商

4.5.1 中国移动

4.5.1.1 企业发展概况

4.5.1.2 大数据发展优势

4.5.1.3 大数据产品体系

4.5.2 中国电信

4.5.2.1 企业发展概况

4.5.2.2 大数据产业布局

4.5.2.3 加快数据项目建设

4.5.3 中国联通

4.5.3.1 企业发展概况

4.5.3.2 业务发展分析

4.5.3.3 大数据项目建设

4.5.3.4 联通大数据公司

4.6 数据资源型企业——BAT企业

4.6.1 阿里巴巴

4.6.1.1 企业发展概况

4.6.1.2 产品技术架构

4.6.1.3 大数据计算服务

4.6.1.4 大数据平台演变

4.6.1.5 企业数据库方案

4.6.2 百度公司

4.6.2.1 企业发展概况

4.6.2.2 大数据解决方案

4.6.2.3 大数据分析平台

4.6.2.4 数据安全方案

4.6.3 腾讯公司

4.6.3.1 企业发展概况

4.6.3.2 腾讯大数据平台

4.6.3.3 大数据技术架构

4.6.3.4 大数据布局动态

第五章 大数据产业中游——数据分析处理层

5.1 大数据处理及分析技术综况

5.1.1 大数据采集与预处理

5.1.2 数据处理框架分析

5.1.3 数据计算模式分析

5.1.4 数据分析细分领域

5.1.5 大数据分析的优劣势

5.2 大数据分析处理产业发展进程

5.2.1 技术生态分析

5.2.2 技术研发热点

5.2.3 技术应用领域

5.2.4 企业布局加快

5.2.5 技术发展趋势

5.3 大数据可视化分析技术分析

5.3.1 数据可视化的基本概述

5.3.2 大数据可视化市场规模

5.3.3 大数据可视化市场格局

5.3.4 数据可视化的研究进展

5.3.5 数据可视化的应用工具

5.3.6 数据可视化面临的挑战

5.3.7 数据可视化技术发展趋势

5.4 大数据安全处理技术分析

5.4.1 大数据安全问题分析

5.4.2 大数据安全涉及的模块

5.4.3 数据安全防护技术分析

5.4.4 数据脱敏安全控制技术

5.4.5 大数据安全防护体系分析

5.5 大数据技术拥有型企业分析

5.5.1 拓尔思

5.5.1.1 企业发展概况

5.5.1.2 企业发展动态

5.5.2 同有科技

5.5.2.1 企业发展概况

5.5.2.2 大数据应用产品

5.5.3 浪潮集团

5.5.3.1 企业发展概况

5.5.3.2 数据基础模型

5.5.3.3 加快推进地区合作

5.5.3.4 建立智慧城市平台

5.5.3.5 推进数据社会化发展

5.5.4 华为公司

5.5.4.1 企业发展概况

5.5.4.2 大数据解决方案

5.5.4.3 大数据产业园建设

5.5.4.4 大数据产业合作

第六章 大数据产业下游——数据交易层

6.1 大数据交易层分析

6.1.1 大数据交易层分析

6.1.2 数据交易品种及类型

6.1.3 数据交易的影响因素

6.1.4 大数据交易标准体系

6.1.5 数据交易市场发展对策

6.2 大数据交易市场运行状况

6.2.1 大数据交易市场环境

6.2.2 大数据交易市场构成

6.2.3 大数据交易市场规模

6.2.4 大数据市场定价方式

6.2.5 细分大数据交易状况

6.2.6 全国首个交易中心成立

6.2.7 大数据交易产业发展动态

6.2.8 大数据交易市场人才需求

6.3 国际重点大数据交易平台分析

6.3.1 Factual

6.3.2 InfoChimps

6.3.3 Microsoft Azure

6.3.4 Fujitsu

6.4 中国大数据交易平台发展综况

6.4.1 交易平台经营范围

6.4.2 交易平台发展背景

6.4.3 各地大数据交易平台

6.4.4 地区性平台建设动态

6.4.5 平台未来发展策略

6.5 中国典型大数据交易平台分析

6.5.1 贵阳大数据交易所

6.5.1.1 平台发展概况

6.5.1.2 平台发展优势

6.5.1.3 平台发展劣势

6.5.1.4 平台运营状况

6.5.1.5 平台发展特点

6.5.2 数据堂交易平台

6.5.2.1 平台发展概况

6.5.2.2 平台发展优势

6.5.2.3 平台发展劣势

6.5.2.4 商业模式分析

6.5.3 中关村大数据交易平台

6.5.3.1 平台发展概况

6.5.3.2 平台发展优势

6.5.3.3 平台发展劣势

6.5.4 香港大数据交易所

6.5.4.1 平台发展概况

6.5.4.2 平台发展动态

第七章 大数据产业下游——数据应用层

7.1 大数据应用层分析

7.1.1 大数据应用层结构

7.1.2 大数据衍生应用层

7.2 大数据应用服务型企业介绍

7.2.1 百分点集团

7.2.1.1 企业发展概况

7.2.1.2 大数据产业布局

7.2.2 明略数据

7.2.2.1 企业发展概况

7.2.2.2 大数据分析产品

7.2.3 TalkingData

7.2.3.1 企业发展概况

7.2.3.2 未来发展态势分析

7.3 工业大数据

7.3.1 工业大数据基本概况

7.3.2 工业大数据发展阶段

7.3.3 工业大数据市场规模

7.3.4 工业大数据应用案例

7.3.5 工业大数据发展问题对策

7.3.6 工业大数据应用趋势分析

7.4 医疗大数据

7.4.1 医疗大数据体系分析

7.4.2 医疗大数据应用场景

7.4.3 医疗大数据市场规模

7.4.4 医疗大数据市场供需

7.4.5 医疗大数据区域格局

7.4.6 医疗大数据应用案例

7.4.7 医疗大数据发展问题及对策

7.4.8 医疗大数据发展方向分析

7.5 金融大数据

7.5.1 金融大数据体系分析

7.5.2 金融大数据典型应用领域

7.5.3 金融大数据创新应用领域

7.5.4 金融大数据应用市场结构

7.5.5 金融大数据市场竞争格局

7.5.6 金融行业大数据发展特征

7.5.7 金融大数据发展挑战及对策

7.6 交通大数据

7.6.1 交通大数据应用概况

7.6.2 交通大数据应用状况分析

7.6.3 交通行业大数据应用需求

7.6.4 交通大数据融合应用试点项目

7.6.5 交通出行大数据合作动态

7.6.6 交通大数据应用案例分析

7.6.7 交通大数据应用问题及对策

7.6.8 交通大数据应用未来发展展望

7.7 电信大数据

7.7.1 电信大数据的发展阶段

7.7.2 电信大数据源供给规模

7.7.3 电信大数据应用需求分析

7.7.4 电信行业大数据应用情况

7.7.5 电信运营商价值数据分布

7.7.6 运营商大数据的应用模式

7.7.7 电信行业大数据应用案例

7.7.8 电信大数据发展的挑战及对策

7.8 零售大数据

7.8.1 零售大数据发展概况

7.8.2 零售行业数据采集方式

7.8.3 零售行业大数据应用需求

7.8.4 零售行业大数据应用现状

7.8.5 大数据下的新零售模式

7.8.6 零售大数据发展问题及对策

7.8.7 企业应用零售大数据的方向

7.9 电商大数据

7.9.1 电商大数据的主要来源

7.9.2 大数据处理对电子商务的影响

7.9.3 电子商务大数据的应用需求

7.9.4 电子商务大数据的具体应用

7.9.5 数据分析提高电商企业绩效

7.9.6 全球首个电商大数据指数发布

7.9.7 政府重视电商大数据共享工作

7.9.8 电商大数据应用的挑战及对策

7.10 政府大数据

7.10.1 政府数据资产基本分类

7.10.2 政府大数据的顶层设计

7.10.3 政府大数据的经济价值

7.10.4 政府部门大数据应用案例

7.10.5 全国公安大数据项目状况

7.10.6 政府大数据信息公开需求

7.10.7 政府大数据未来发展展望

第八章 大数据应用软件及设备分析

8.1 大数据应用软件分析

8.1.1 大数据软件构成框架

8.1.2 大数据典型软件分析

8.1.3 智能软件的应用价值

8.1.4 大数据软件市场规模

8.1.5 大数据软件发展方向

8.2 大数据硬件设备分析

8.2.1 大数据硬件构成框架

8.2.2 大数据主要硬件设备

8.2.3 大数据硬件市场规模

8.3 大数据一体机设备分析

8.3.1 大数据一体机简介

8.3.2 大数据一体机的优劣分析

8.3.3 大数据一体机的用户类型

8.3.4 国外竞争格局与品牌分布

8.3.5 国内市场竞争格局分析

8.3.6 国内企业竞争优劣势分析

8.3.7 国内主流品牌及其特点

第九章 大数据产业发展模式探究

9.1 大数据交易模式分析

9.1.1 以数据运营方式为分类标准

9.1.2 以大数据结构化程度为分类标准

9.1.3 以数据产权转让形式为分类标准

9.2 大数据行业盈利模式分析

9.2.1 解决方案

9.2.2 基础设施

9.2.3 数据产品

9.2.4 行业应用

9.3 大数据行业商业模式分析

9.3.1 B2B大数据应用模式

9.3.2 技术提供及软件开发

9.3.3 大数据咨询分析服务

9.3.4 大数据服务市场规模

9.3.5 大数据通用服务模式

9.3.6 自有平台大数据分析

9.3.7 信息订制与采购模式

9.3.8 信息数据租售模式

9.4 企业大数据商业化应用模式

9.4.1 企业大数据的基本构成

9.4.2 企业大数据商业化应用背景

9.4.3 企业大数据商业化应用层面

9.4.4 企业大数据商业化应用重点

9.4.5 企业大数据商业化应用关键

9.4.6 企业大数据商业化应用途径

第十章 重点区域大数据行业发展分析

10.1 中国大数据产业区域发展格局

10.1.1 国家大数据综合试验区

10.1.2 地区大数据管理机构设置

10.1.3 城市大数据人才储备状况

10.2 大数产业区域发展指数分析

10.2.1 各省市大数据发展指数

10.2.2 各地区大数据发展潜力

10.2.3 各地区大数据发展态势

10.2.4 其地区大数据应用态势

10.2.5 各地区大数据技术研发

10.2.6 各地区大数据共享态势

10.3 大数据产业园区发展分析

10.3.1 大数据产业园概述

10.3.2 大数据产业园区分类

10.3.3 大数据产业园数量规模

10.3.4 大数据产业园典型模式

10.3.5 产业园面临机遇与挑战

10.3.6 国家级新区布局大数据

10.4 京津冀大数据产业集群

10.4.1 京津冀地区经济运行情况

10.4.2 京津冀大数据产业发展综况

10.4.3 河北省大数据产业发展状况

10.4.4 北京市大数据产业发展状况

10.4.5 天津市大数据产业发展综况

10.4.6 天津市大数据安全布局动态

10.5 珠三角大数据产业集群

10.5.1 珠三角地区基本运行状况

10.5.2 珠三角大数据产业发展特点

10.5.3 大数据试验区建设方案出台

10.5.4 广州市大数据产业发展布局

10.5.5 深圳市大数据产业发展状况

10.6 长三角大数据产业集群

10.6.1 长三角地区基本发展状况

10.6.2 长三角大数据产业发展综况

10.6.3 长三角大数据产业发展特点

10.6.4 上海市大数据产业发展布局

10.6.5 浙江省大数据产业发展状况

10.7 西南大数据产业集群

10.7.1 西南地区基本发展状况

10.7.2 西南大数据产业发展潜力

10.7.3 重庆市大数据产业发展状况

10.7.4 四川省大数据产业发展布局

10.8 其他地区大数据产业发展动态

10.8.1 内蒙古

10.8.2 河南省

10.8.3 山东省

10.8.4 安徽省

10.8.5 湖南省

10.8.6 江西省

10.8.7 海南省

10.9 典型发展案例——贵州大数据产业发展经验

10.9.1 贵州大数据发展机遇及优势

10.9.2 贵州省大数据发展地位

10.9.3 贵州大数据产业优惠政策

10.9.4 贵州省数字设施投资状况

10.9.5 贵州大数字产业运行状况

10.9.6 大数据与实体经济融合

10.9.7 贵阳市大数据发展状况

10.9.8 贵阳大数据交易规模分析

10.9.9 贵安新区大数据建设状况

10.9.10 贵州大数据应用状况分析

第十一章 中国大数据产业投资价值分析

11.1 大数据产业投资价值及机会评估

11.1.1 投资价值综合评估

11.1.2 市场投资机会评估

11.1.3 投资发展动力评估

11.1.4 投资进入时机分析

11.1.5 产业投资象项分布

11.2 大数据行业投资壁垒分析

11.2.1 竞争壁垒

11.2.2 技术壁垒

11.2.3 资金壁垒

11.2.4 政策壁垒

11.3 大数据产业投资风险及防范

11.3.1 大数据行业投资风险综述

11.3.2 数据的流动性和可获取性风险

11.3.3 大数据安全风险及防范机制

11.3.4 大数据项目投资风险急剧增加

11.3.5 大数据产业投资建议与策略

11.3.6 评估大数据产业投资回报的措施

11.4 2020-2025年中国大数据产业预测分析

11.4.1 2020-2025年中国大数据产业影响因素分析

11.4.2 2020-2025年中国大数据产业市场规模预测

11.4.3 2020-2025年中国数据经济市场规模预测

第十二章 中国大数据产业投融资分析

12.1 A股及新三板上市公司在大数据产业投资动态分析

12.1.1 投资项目综述

12.1.2 投资区域分布

12.1.3 投资模式分析

12.1.4 典型投资案例

12.2 大数据行业投融资热点分析

12.2.1 大数据产业投资热点

12.2.2 数据源及流通领域

12.2.3 软硬件产品领域

12.2.4 应用端领域

12.3 中国大数据产业融资动态分析

12.3.1 教育大数据企业融资动态

12.3.2 媒体大数据企业融资动态

12.3.3 保险大数据公司融资布局

12.3.4 大数据软件企业融资布局

12.3.5 酒店大数据运营投资项目

12.3.6 医疗大数据企业融资动态

12.3.7 数据分析平台融资动态

12.3.8 数据搜索公司融资动态

12.4 中国大数据产业投资项目案例

12.4.1 城市数据湖运营项目

12.4.2 大数据系统平台项目

12.4.3 大数据产业园建设项目

12.4.4 大数据管理平台建设项目

12.5 中国大数据产业链投资机会分析

12.5.1 硬件层面投资机会分析

12.5.2 软件层面投资机会分析

12.5.3 信息服务层面投资机会

第十三章 大数据产业发展前景及趋势

13.1 全球大数据产业发展前景及趋势预测

13.1.1 全球大数据企业竞争趋势

13.1.2 全球大数据产业发展趋势

13.1.3 全球大数据市场发展热点展望

13.2 中国大数据产业发展机遇及前景预测

13.2.1 财政机遇分析

13.2.2 产业发展机遇

13.2.3 行业未来发展特点

13.2.4 大数据市场热点分析

13.2.5 大数据市场重点内容

13.2.6 大数据人才需求预测

13.3 中国大数据产业发展趋势预测

13.3.1 大数据产业趋势预测

13.3.2 大数据重点应用方向

13.3.3 区域特色化发展趋势

13.3.4 产业融合发展趋势加深

13.3.5 大数据技术发展方向分析

13.3.6 数据安全和数据流动成为焦点

第十四章 大数据产业发展政策分析

14.1 大数据产业政策体系分析

14.1.1 发达国家大数据政策对比

14.1.2 中国大数据产业政策特点

14.1.3 中国大数据产业政策汇总

14.1.4 中国大数据产业发展纲要

14.1.5 大数据标准化白皮书分析

14.1.6 大数据产业管理机制加强

14.2 大数据产业应用类政策分析

14.2.1 工业大数据政策环境分析

14.2.2 金融机构大数据治理规范

14.2.3 医疗大数据政策总体分析

14.2.4 交通运输大数据发展纲要

14.2.5 交通旅游大数据应用试点

14.2.6 林业大数据发展指导意见

14.2.7 水利大数据发展指导意见

14.2.8 生态环境信息化建设方案

14.2.9 国土资源大数据应用政策

咨询订购《2020-2025年中国大数据市场竞争格局分析与投资风险预测报告》

请拨打 400-886-7071 (免长途费) Emai:kf@51baogao.cn

图表目录

图表 大数据的4V特征

图表 大数据的类型

图表 大数据技术框架

图表 大数据产业链

图表 大数据产业主要数据资产类企业

图表 大数据产业链产值分布及发展方向

图表 大数据关键技术

图表 中国大数据产业链技术层细分

图表 未来大数据处理的核心技术

图表 全球大数据市场的收入规模

图表 2018年全球大数据企业类型分布

图表 国际主要大数据企业简介

图表 全球主要大数据存储企业

图表 全球主要大数据分析企业

图表 利用大数据进行在线精准营销的效果

图表 大数据金融的场景应用

图表 大数据智能洞察金融业

图表 金融行业客户的重要性

图表 大数据洞察推动民生银行的转型与创新

图表 大数据预测金融欺诈

图表 中国金融行业大数据投资结构

图表 智能交通的数据处理体系

图表 交通大数据应用领域示意图

图表 大数据在滴滴出行中的应用

图表 电信大数据发展阶段

图表 电信运营商大数据应用

……

图表 2020-2025年中国大数据产业市场规模预测

图表 2020-2025年中国数据经济市场规模预测

咨询订购《2020-2025年中国大数据市场竞争格局分析与投资风险预测报告》

请拨打 400-886-7071 (免长途费) Emai:kf@51baogao.cn

关于我们 公司简介订购流程联系我们常见问题典型客户人才招聘手机访问RSS订阅 京ICP备11020891号-10 公安部备案:110105007362
客服
购物车